Measuring Anomalous Heating in a Planar Ion Trap with Variable Ion-Surface Separation
نویسندگان
چکیده
منابع مشابه
Planar Ion Trap Geometry for Microfabrication
We describe a novel high aspect ratio radiofrequency linear ion trap geometry that is amenable to modern microfabrication techniques. The ion trap electrode structure consists of a pair of stacked conducting cantilevers resulting in confining fields that take the form of fringe fields from parallel plate capacitors. The confining potentials are modeled both analytically and numerically. This io...
متن کاملHeating rates and ion motion control in a Y-junction surface-electrode trap
We measure ion heating following transport throughout a Y-junction surface-electrode ion trap. By carefully selecting the trap voltage update rate during adiabatic transport along a trap arm, we observe minimal heating relative to the anomalous heating background. Transport through the junction results in an induced heating between 37 and 150 quanta in the axial direction per traverse. To relia...
متن کاملScaling and suppression of anomalous heating in ion traps.
We measure and characterize anomalous motional heating of an atomic ion confined in the lowest quantum levels of a novel rf ion trap that features moveable electrodes. The scaling of heating with electrode proximity is measured, and when the electrodes are cooled from 300 to 150 K, the heating rate is suppressed by an order of magnitude. This provides direct evidence that anomalous motional hea...
متن کاملReduction of trapped-ion anomalous heating by in situ surface plasma cleaning
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Anomalous motional heating is a major obstacle to scalable quantum information processing with trapped ions. Althou...
متن کاملAnomalous ion heating from ambipolar-constrained magnetic fluctuation-induced transport
A kinetic theory for the anomalous heating of ions from energy stored in magnetic turbulence is presented. Imposing self-consistency through the constitutive relations between particle distributions and fields, a turbulent Kirchhoff’s Law is derived that expresses a direct connection between rates of ion heating and electron thermal transport. This connection arises from the kinematics of elect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2018
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.120.023201